ON THE STABILIZATION OF CONTROL SYSTEMS

(0 STABILIZAISII SISIEM REGULIROVANIIA)

PMM Vol.28, № 4, 1964, pp.761-765
E.A.BARBASHIN and E.I.GERASHCHENKO
(Sverdlovsk)

(Received February 29, 1964)

This paper deals with a general approach to the description of the possible methods of stabilization of automatic control systems, on the basis of the method of Liapunov functions. It is assumed that the transfer function of the object has $n-1$ poles in the left half plane and one single pole at the origin. A method is given for choosing the parameters which wili yield asymptotic stability for systems with variable structure, and having a limiter.

1. Let the control system be described by the system of differential equations with constant coefficients

$$
\begin{equation*}
x_{i}^{\cdot}=a_{i 1} x_{1}+\ldots+a_{i n} x_{n} \quad(i=1, \ldots, n) \quad\left(()^{\cdot}=\frac{d}{d t}\right) \tag{1.1}
\end{equation*}
$$

We shall assume that the characteristic equation of the system (1.1) has one root equal to zero and $n-1$ roots with negative real parts.

We shall set the problem of the description of the possible methods of correction of a control system which yield asymptotic stability for any initial perturbation conditions. This problem is interesting since in practice there are of tien systems for which the transfer function of the controlled object has a simple pole at the origin. From a mathematical point of view, the method of study used here, is analogous to those made when the questions of stability in the initial case of one root equal to zero were studied ([1] p.140).

Furthermore, we shall assume below, that among the minors of order $n-1$, different from 0 , of the matrix A of the coefficients of the system, there is at least one composed of coefficients of the $n-1$ last equations of the system (1.1). We shall consider together with the system (1.1) the system

$$
\begin{equation*}
x_{i}^{*}=a_{i 1} x_{1}+\ldots+a_{i n} x_{n}-u\left(x_{1}, \ldots, x_{n}\right) \varphi_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{1.2}
\end{equation*}
$$

where the functions $\varphi:\left(x_{1}, \ldots, x_{\mathrm{n}}\right)$ are given and the function $u\left(x_{1}, \ldots, x_{\mathrm{n}}\right)$ is subject to determination.

As known, there exists a general linear transformation

$$
y=b_{1} x_{1}+\ldots+b_{n} x_{n}, \quad y_{i}=b_{i 1} x_{1}+\ldots+b_{i n} x_{n} \quad\left(i=1, \ldots, n-1, b_{n} \neq 0\right)
$$

which transforms the system (1.1) into the system of differential equations

$$
\begin{equation*}
\dot{y}=0, \quad y_{i}=p_{i 1} y_{1}+\ldots+p_{i, n-1} y_{n-1} \quad(i=1,2, \ldots, n-1) \tag{1.3}
\end{equation*}
$$

This transformation changes the system (1.2) into the system

$$
\begin{gather*}
y=-u\left(b_{1} \varphi_{1}+\ldots+b_{n} \varphi_{n}\right) \\
y_{i}=p_{i 1} y_{1}+\ldots+p_{i, n-1} y_{n-1}-u\left(b_{i 1} \varphi_{1}+\ldots+b_{i n} \varphi_{n}\right) \tag{1.4}
\end{gather*}
$$

Since the roots of the characteristic equation of the matrix p composed of the coefficients $p_{i k}(i=1, \ldots, n-1, k=1, \ldots, n-1)$, have negative real darts, then for any negative definite form $w\left(y_{1}, \ldots, y_{n-1}\right)$ of the variables y_{1}, \ldots, y_{n-1} there is a positive definite form $v_{1}\left(y_{1}, \ldots, y_{n-1}\right)$ of the same variables such that on the basis of the system (1.3) we shall get

$$
\begin{equation*}
\frac{d v_{1}}{d t}=\sum_{i=1}^{n-1} \frac{\partial v_{1}}{\partial y_{i}}\left(p_{i 1} y_{1}+\ldots+p_{i, n-1} y_{n-1}\right)=u^{v}\left(y_{1}, \ldots, y_{n-1}\right) \tag{1.5}
\end{equation*}
$$

We shall consider the quadratic form

$$
\begin{equation*}
v\left(y_{1}, \ldots, y_{n-1}, y\right)=v_{1}\left(y_{1}, \ldots, y_{n-1}\right)+1 / 2 y^{2} \tag{1.6}
\end{equation*}
$$

and shall take its derivative on the basis of the system (1.4).

$$
\begin{equation*}
\frac{d v}{d t}=w\left(y_{1}, \ldots, y_{n-1}\right)-u \sum_{k=1}^{n}\left(\sum_{i=1}^{n-1} \frac{\partial v_{1}}{\partial y_{i}} b_{i k}+b_{k} y\right) \varphi_{k} \tag{1.7}
\end{equation*}
$$

We shall now impose a complementary limitation on the functions φ_{k}, by requiring that for $y_{1}=y_{2}=\ldots=y_{n-1}=0, y \neq 0$ the following inequality be satisfied:

$$
b_{1} \varphi_{1}+\ldots \ldots+b_{n} \varphi_{n} \neq 0
$$

In this case, condition

$$
\begin{equation*}
\operatorname{sign} u=\operatorname{sign} \sum_{k=1}^{n}\left(\sum_{i=1}^{n-1} \frac{\partial v_{1}}{\partial y_{i}} b_{i k}+b_{k} y\right) \varphi_{k} \tag{1.8}
\end{equation*}
$$

is a sufficient condition of asymptotic stability of the zero solution of the system (1.2). Since on the right-hand side, in the parentheses, there is a linear form of the variables $y_{1}, \ldots, y_{n-1}, y_{\text {, }}$ then this condition, going back to the previous variables, can be rewritten

$$
\begin{equation*}
\operatorname{sign} u=\operatorname{sign} \sum_{k=1}^{n}\left(c_{k 1} x_{1}+\ldots+c_{k n} x_{n}\right) \varphi_{k} \tag{1.9}
\end{equation*}
$$

It is interesting to consider the case, when the function $u\left(x_{1}, \ldots, x_{n}\right)$, representing the command of the control system, belongs beforehand to a given class of functions ([3] p. 608).

For instance, let the function u satiafy the condition $|u| \leqslant 1$, and furthermore let $\varphi_{1}=\varphi_{2}=\ldots=\varphi_{n-1} \equiv 0, \varphi_{n}=\varphi$. If, from condition (1.9) we shall search for the function u, which yields the most rapid decrease of the Liapunov function v [2 and 3] along the system trajectories (1.2), we shall get

$$
\begin{equation*}
u=\operatorname{sign}\left(c_{1} x_{1}+\ldots+c_{n} x_{n}\right) \varphi\left(x_{1}, \ldots, x_{n}\right) \tag{1.10}
\end{equation*}
$$

thus the command u will be a plecewise constant function and for $\varphi \equiv 1$ the system will be a pure relay system.

We shall consider the case in which the function φ is given by the relations

$$
\varphi=K x_{n} \quad \text { for }\left|K x_{n}\right| \leqslant H, \quad \varphi=H \operatorname{sign} x_{n} \quad \text { for } \quad\left|K x_{n}\right|>H
$$

where K and B are positive constants. From (1.10) there follows that

$$
u=\operatorname{sign}\left(c_{1} x_{1}+\ldots+c_{n} x_{n}\right) x_{n}
$$

Thus, in the present case we get a correction of the control system with a ilmiter on the input. If $K=\infty$, we get a pure relay system. For $H=\infty$ and K finite we get a class of control systems (systems with variable structure), studied lately in many works [4 and 5].

It is important to notice that with the method described above for choosing the quantities o_{1} the systems considered will be asymptotically stable for any positive values of a gain coefficient K and the quantity H, whereas in many other cases, when the transfer function of the system has poles in the right half-plane, the stabilization of the system is achieved by the choice of a sufficientiy large value of K [5]. On the other hand, from (1.7) there follows that an increase of K and H yields a better quality of the transient response.
2. Following Liapunov ([1] p. 140) we shall now give a method of construction of a linear transformation which changes the system (1.1) into the system (1.3). We shall determine first the quantity

$$
y=b_{1} x_{1}+\ldots+b_{n} x_{n}\left(b_{n}=1\right)
$$

in such a way that on the basis of the system (1.1) the equality

$$
\begin{equation*}
y^{\prime}=\sum_{i=1}^{n} \sum_{k=1}^{n} b_{i} a_{i k} x_{k}=0 \tag{2.1}
\end{equation*}
$$

is satisfied.
Condition (2.1) leads to the system of equations

$$
\begin{equation*}
a_{1 k} b_{1}+\ldots+a_{n k} b_{n}=0 \quad(k=1, \ldots, n) \tag{2.2}
\end{equation*}
$$

which, obviously, has the required solution, since the rank of the matrix A is equal to $n-1$. Furthermore, we assume

$$
y_{i}=x_{i}-d_{i} y \quad(i=1, \ldots, n-1)
$$

and get the coefficients d_{i} from the conditions by which y_{i} does not depend upon the variable y. Easy computations yield the system

$$
\begin{gather*}
y_{i}^{\prime}=\sum_{k=1}^{n-1}\left(a_{i k}-a_{i n} b_{k}\right) y_{k}+\left[\sum_{k=1}^{n-1}\left(a_{i k}-a_{i n} b_{k}\right) d_{k}+a_{i n}\right] y \\
(i=1, \ldots, n-1) \tag{2.3}
\end{gather*}
$$

Equating to zero the coefficients of ν, we get for the determination of d_{k} the system

$$
\begin{equation*}
\sum_{k=1}^{n-1}\left(a_{i k}-a_{i n} b_{k}\right) d_{k}+a_{i n}=0 \quad(i=1, \ldots, n-1) \tag{2.4}
\end{equation*}
$$

which has a solution since its determinant is not equal to zero. In fact, the transformation from coordinates x_{1}, \ldots, x_{n} to coordinates $y, y_{1}, \ldots, y_{n-1}$ does not change the rank of the matrix composed of the coefficients of the system. The rank of the matrix composed of the coefficents of the system (2.3) (together with the equation $y^{-}=0$), is equal to $n-1$, whereupon $\left(a_{i k}-a_{i n} b_{k}\right) \neq 0$, since if it were not true, the characteristic equation of the system would have, at least, one more root equal to zero.

Thus, the transformation searched for has the form

$$
\begin{gather*}
y=b_{1} x_{1}+\ldots+b_{n} x_{n}, \quad y_{i}=x_{i}-d_{i}\left(b_{1} x_{1}+\ldots+b_{n} x_{n}\right) \\
(i=1,2, \ldots) \tag{2.5}
\end{gather*}
$$

where d_{i} and b_{k} are determined from the systems (2.2) and (2.4).
We shall consider furthermore the case in which the control system is described by Equation

$$
\begin{gather*}
L(p), x=-u\left(x, x^{\prime}, x, \ldots, x^{(n-1)}\right) \varphi\left(x, x, x, \ldots, x^{(n-1)}\right) \tag{2.6}\\
\left(L(p)=p^{n}+a_{1} p^{n-1}+\ldots+a_{n-1} p, \quad p=\frac{d}{d t}\right)
\end{gather*}
$$

whereupon Equation

$$
\lambda^{n-1}+a_{1} \lambda^{n-2}+\ldots+a_{n-1}=0
$$

has only roots with negative real parts.
Equation (2.6) can be represented by the system

$$
\begin{gather*}
x_{i}=x_{i+1}(i=1, \ldots, n-1), \quad x_{1}=x \\
x_{n}^{\cdot}=-a_{n-1} x_{2}-\ldots-a_{1} x_{n}-\quad u\left(x_{1}, \ldots, x_{n}\right) \varphi\left(x_{1}, \ldots, x_{n}\right) \tag{2.7}
\end{gather*}
$$

From the system of equations (2.2) we have $b_{i}=a_{n-1}$ for $i=1, \ldots, n-1$, $b_{n}=1$.
Let now $w\left(x_{2}, \ldots, x_{1}\right)$ be any negative definite function of the variables x_{2}, \ldots, x_{n}. It is possible to find such a negative definite quadratic form $v_{1}\left(x_{2}, \ldots, x_{n}\right)$ of the same variables, the full derivative of which will be equal to w on the basis of the system

$$
\begin{equation*}
x_{i}^{\cdot}=x_{i+1}(i=2, \ldots, n-1), \quad x_{n}^{-}=-a_{n-1} x_{2}-\ldots-a_{1} x_{n} \tag{2.8}
\end{equation*}
$$

Obviously, the function v_{h} exists since the roots of the characteristic equation of the system (2.8) have negative real parts.

We shall consider the function

$$
v\left(y, x_{2}, \ldots, x_{n}\right)=v_{1}\left(x_{2}, \ldots, x_{n}\right)+1 / 2 y^{2} \quad\left(y=\sum_{i=1}^{n-1} a_{n-i} x_{i}+x_{n}\right)
$$

Taking the derivative of the function v, on the besis of the system (2.7) we get

$$
\frac{d v}{d t}=w-\left(\frac{\partial v_{1}}{\partial x_{n}}+\sum_{i=1}^{n-1} a_{n-i} x_{i}+x_{n}\right) u\left(x_{1}, \ldots, x_{n}\right) \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

Thus, in the present case, we shall get as sufficient conditions of asymptotic stability the relations

$$
\begin{gathered}
\varphi\left(x_{1}, 0, \ldots, 0\right) \neq 0 \quad \text { for } x_{1} \neq 0 \\
\operatorname{sign} u=\operatorname{sign} \varphi\left(x_{1}, \ldots, x_{n}\right)\left(\frac{\partial v_{1}}{\partial x_{n}}+\sum_{k=1}^{n-1} a_{n-k} x_{k}+x_{n}\right)
\end{gathered}
$$

Now, if we assume $\varphi\left(x_{1}, \ldots, x_{n}\right)=K x_{1}$ and we search the control function u among the class of functions which satisfy the condition $|u| \leqslant 1$, proceeding from the requirement of the minimum of $d v / d t$, we get

$$
\begin{equation*}
u=\operatorname{sigq} x_{1}\left(\frac{\partial v_{1}}{\partial x_{n}}+\sum_{k=1}^{n-1} a_{n-k} x_{k}+x_{n}\right) \tag{2.9}
\end{equation*}
$$

3. Now, we shall consider the problems of the stabilization or a control system with a slightly different point of view. Let us assume in the system (2.7)

$$
\begin{gather*}
\varphi\left(x_{1}, \ldots, x_{n}\right)=K x_{1} \quad(K>0), \quad u=\operatorname{sign} x_{1} \sigma(r, x) \\
\sigma(r, x)=c_{n-1}(r) x_{1}+c_{n-2}(r) x_{2}+\ldots+c_{0}(r) x_{n} \tag{3.1}
\end{gather*}
$$

where r is a real parameter, and the coefficients $o_{1}(r)$ satisfy the conditions

$$
\begin{equation*}
c_{0}(r)=1, \quad c_{i+1}(r)=r c_{i}(r)+a_{i+1} \quad(i=0,1, \ldots, n-2), \quad\left|r c_{n-1}(r)\right| \leqslant K \tag{3.1}
\end{equation*}
$$

It is known [6] that conditions (3.1) guarantee the presence of a slipping regime in any point of the hyperplane $\sigma(r, x)=0$.

Introducing the new coordinates $y_{i}=x_{i}(i=1,2, \ldots, n-1), y_{n}=\sigma(r, x)$, the system (2.7) yields the system

$$
\begin{align*}
& \qquad \begin{array}{l}
\frac{d y_{i}}{d t}=y_{i+1} \quad(i=1, \ldots, n-2), \quad \frac{d y_{n-1}}{d t}=-\sum_{i=1}^{n-1} c_{n-i}(r) y_{i}+y_{n} \\
\frac{d y_{n}}{d t}=r y_{n}-\alpha K\left|y_{1}\right| \operatorname{sign} y_{n}
\end{array} \quad\left(\alpha=1+\frac{r}{K} c_{n-1}(r) \operatorname{sign} y_{1} y_{n}\right)
\end{align*} \text { From condition (3.1) there follows } \quad 0<\alpha<2 . \quad \text {. }
$$

It is known [4], that the motion in the hyperplane of slipping is described by the system

$$
\begin{equation*}
\frac{d y_{i}}{d t}=y_{i+1} \quad(i=1, \ldots, n-2), \quad \frac{d y_{n-1}}{d t}=-\sum_{i=1}^{n-1} c_{n-i}(r) y_{i} \tag{3.3}
\end{equation*}
$$

Let $r<0$ and the zero solution of the system (3.3) be asymptotically stable. It can be shown that in such a case the zero solution of the system (3.2) and consequently that of the system (2.7) (for $\varphi=K x_{1}, u=\operatorname{sign} x_{1} \sigma(r, x)$) will be asymptotically stable for any initial perturbation conditions.

In fact, on the basis of the well known theorem by Liapunov ([1] p. 107), there exists a positive definite quadratic form $v_{1}\left(y_{1}, \ldots, y_{n-1}\right)$, the total derivative of which is, on the basis of system (3.3), equal to the quadratic form $w=-y_{1}{ }^{2}-\ldots-y_{n-1}{ }^{2}$.

We shall consider the function

$$
v\left(y_{1}, \ldots, y_{n}\right)=v_{1}\left(y_{1}, \ldots, y_{n-1}\right)+1 / 2 A y_{n}^{2} \quad(A>0)
$$

The time derivative of the function v, taken on the basis of the system (3.2) has the form

$$
\begin{equation*}
\frac{d v}{d t}=-\sum_{i=1}^{n-1}{y_{i}^{2}}^{2}+\frac{\partial v_{1}}{\partial y_{n-1}} y_{n}+A r y_{n}^{2}-\alpha A K\left|y_{1} y_{n}\right| \tag{3.4}
\end{equation*}
$$

Since $r<0$, there follows from Sylvester's criterion, that for a sufficientiy large positive value of A, the quadratic form on the right-hand side of Equation (3.4) will become negative definite. Since $\alpha>0$, then the Liapunov's theorem on asymptotic stability can be now applied.

We shall notice that in formulation of the last result, unlike in the previous one, the real parts of the roots of Equation $\lambda^{n-1}+a_{1} \lambda^{n-2}+\ldots .$. $\ldots+a_{n-1}=0$ were not required to be negative. However, if this requirement is considered fulfilled, then, on the basis of the second consequence of Theorem 2 of [7], there exists a negative value of r which yields asymptotic stability in the hyperplane of slipping. Therefore, in the same case, the property of the global asymptotic stability of the zero solution of the system (2.7) takes place for the chosen method of control.

BIBLIOGRAPHY

1. Liapunov, m.M., Obshchaia zadacha ob ustoichivosti dvizheniia (The General Problem of the Stability of Motion). Gostekhizdat, 1950.
2. Krasovski1, N.N., Vtoroi metod Liapunova v teorii ustoichivosti dvizhenila (Liapunov's second method in the theory of stability of motion). (Proc. Ali-Union Congr. of theor. and appl. mech.). Izd.Akad.Nauk SSSR, pp. 36-47, 1962.
3. Zubov, V.I., Kolebanila v nelineinykh i upravliaemykh sistemakh (Oscillations in Nonlinear and Control Systems). Sudpromeiz, 1962.
4. Emel'ianov, S.V. and Bermant, M.A., K voprosu o postroenif vysokokachestvennykh sistem avtomaticheskogo upravienila ob"ektami s izmeniaiushchimisia parametrami (On the question of the construction of high quality systems of automatic control of objects with variable parameters). Dokl.Akad.Nauk SSSR, Vol.145, № 4, pp.748-751, 1962.
5. Barbashin, E.A., Tabueva, V.A. and Eldinov, R.M., ub ustoichivosti odnoi sistemy regulirovanila's peremennoi strukturoi pri narushenil usiovii skol'zhenila (On the stability of a control system with variable structure when the slipping conditions are violated). Avtomatika i telemekhanika Vol.14, № 7, pp.882-890, 1963.
6. Emel'ianov, S.V. and Taran, V.A., Ob odnom klasse sistem av omaticheskogo regulirovaniia s peremennoi strukturoi (On a class of control system with variable structure). Izv.Akad.Nauk SSSR, OTN, Energetika 1 avtomatika, № 3, pp.183-188, 1962.
7. Gerasnchenko, E.I., Ob ustoichivosti dvizhenila v giperploskosti skol'zheniia dlia nekotorykh sistem avtomaticheskogo regulirovaniia s peremennoi strukturoi. (On stability of the motion in the hyperplane of slipping for some automatic control systems with variable structure). Izv.Akad.Nauk SSSR, Tekhnicheska1a kibernetika, №4, pp.157-163, 1963.
